Question Number	Acceptable Answers	Reject	Mark
1(a)(i)	(Different) boiling temperatures/ boiling points ALLOW Range of boiling temperatures		(1)

Question	Acceptable Answers	Reject	Mark
Number 1(a)(ii)	: breaking of carbon chain (in a hydrocarbon/ alkane) to give shorter chain hydrocarbon(s)/ smaller molecules OR breaking a hydrocarbon/ alkane to give smaller molecules OR Breaking an alkane to give an alkene and (a smaller) alkane/ hydrogen (1)	Just "Breaking a hydrocarbon" Just "Breaking a molecule" Breaking a hydrocarbon to form branched chains or ring structures	(2)
	Reforming: converting straight chain to a (more) branched chain/ ring/ arene / aromatic compoundALLOW Specific examples(1)IGNORE Makes more useful compounds Converting low octane (fuels) into high octane (fuels)		

Question Number	Acceptable Answers	Reject	Mark
1(a)(iii)	Look at final answer: +71 (kJ mol ⁻¹) scores 3 marks -71/ 71 (kJ mol ⁻¹) scores 2 marks -5825 (kJ mol ⁻¹) scores 1 mark		(3)
	Method: $C_4H_{10} \rightarrow C_3H_6 + CH_4$ $(+13/2 O_2)$ -2877 -2058-890 / -2948 $4CO_2 + 5H_2O$		
	MP1 Labelled cycle OR use of $\Delta H = \sum \Delta H_{\text{combustion}}$ reactants - $\sum \Delta H_{\text{combustion}}$ products (1)		
	$MP2 \\ \Delta H = (-2877 - (-2058 + (-890))) $ (1)		
	MP3 =+71 (kJ mol ⁻¹) (1)	Incorrect units	

Question Number	Acceptable Answers	Reject	Mark
1(a)(iv)	$\begin{array}{l} C_{4}H_{10}\rightarrow C_{2}H_{6}\ +\ C_{2}H_{4}\\ OR\\ C_{4}H_{10}\rightarrow C_{4}H_{8}\ +\ H_{2}\\ OR\\ C_{4}H_{10}\rightarrow 2C_{2}H_{4}\ +\ H_{2}\\ \end{array}$ ALLOW Breakdown of multiple butanes Ignore state symbols, even if incorrect	$C_4H_{10} \rightarrow C_3H_6 + CH_4$ Charged products eg $C_2H_5^+$ Free radicals eg $C_2H_5^-$	(1)

Question Number	Acceptable Answers	Reject	Mark
1b(i)	Look at final answer: -2050 (kJ mol ⁻¹) or anything correctly rounded from -2046.528 (-2047, -2046.5, -2046.53) scores 3 marks		(3)
	+2050/ 2050 (kJ mol ⁻¹) scores 2 marks		
	Incorrect rounding scores 2 marks		
	Correct value without sign scores 2 marks		
	Energy transferred = $(200 \times 4.18 \times 34.0)$ = 28424 (J) IGNORE Sign if given (1)		
	Mol pentane =(1.0/72) = 0.01389 / 0.0139 (1)		
	Δ <i>H</i> = - (-28424 ÷ (1/72 x 1000))		
	= −2046.528 (kJ mol ⁻¹)		
	ALLOW TE from MP 1 and 2 provided moles of pentane is not taken as 1 (1)		
	NOTE Use of 0.0139 mol gives -2044.9 (kJ mol ⁻¹) giving 3 marks Use of 0.0138 mol gives -2059.7 (kJ mol ⁻¹) giving 2 marks Use of 0.014 mol gives -2030.29 (kJ mol ⁻¹) giving 2 marks Ignore SF except one or two		

Question Number	Acceptable Answers	Reject	Mark
1(b)(ii)	Incomplete combustion OR Loss of pentane by evaporation ALLOW Volume of water too large to heat evenly Water not stirred evenly Small change in mass inaccurate Heat capacity of /energy needed to heat calorimeter not included	Incomplete reaction Loss of water by evaporation Heat losses Conditions not standard Measuring errors Pentane impure	(1)

Question Number	Acceptable Answers	Reject	Mark
1(b)(iii)	Pentane is very volatile/ has low boiling temperature so risk of explosion		(1)
	OR Has high flammability	Just "it is flammable"	
	IGNORE Reaction is very exothermic	Vapour is toxic Combustion products/ CO toxic	

Question Number	Acceptable Answers	Reject	Mark
1(c)(i)	$C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$ Allow multiples Ignore state symbols even if incorrect		(1)

Question Number	Acceptable Answers		Reject	Mark
1(c)(ii)	Bonds broken are			(2)
	four C-C			
	twelve C-H			
	eight O=O	(1)	O-O single bonds	
	Bonds made are			
	ten C=O			
	twelve O-H	(1)	C-O sing bonds	
	ALLOW TE from (c)(i)			
	If all five bonds are named but formulae not given eg oxygen- oxygen bonds, max 1			
	If all five bonds are correctly identified by formula but numbe are incorrect or missing, max 1	rs		

Question Number	Acceptable Answers	Reject	Mark
1(c)(iii)	The (total) bond energy of the bonds formed is greater than the bond energy of the bonds broken OR Energy released forming new bonds > energy needed to break old bonds OR The sum of the bond energies of the products is greater than the sum of the bond energies of the reactants.	Just"more bonds are made than broken" Answers referring to energy needed to make bonds Energy contained by bonds in reactants> energy contained by bonds in products	(1)

(Total for question = 16 marks)

Question Number	Acceptable Answers	Reject	Mark
2(a)(i)	Species/ atom/ molecule/ particle with an unpaired electron	Just "with a single electron"	(1)
	ALLOW An element with an unpaired electron	A lone electron	
	IGNORE Reference to neutral species /lack of charge	Charged particle with an unpaired electron	

Question Number	Acceptable Answers	Reject	Mark
2(a)(ii)	a ce > zer	CI without •	(1)
	Half arrows going from bond to CI or just beyond and product 2CI• / CI• + CI•		

Question Number	Acceptable Answers		Reject	Mark
2(iii)	$C_2H_6 + CI \bullet \rightarrow C_2H_5 \bullet + HCI$ ALLOW Structural formulae e.g. CH_3CH_3 OR displayed IGNORE Production of C_2H_5CI from $C_2H_5 \bullet$ first step is correct	if (1)	C ₂ H ₅ +	(2)
	Propagation The second mark is independent the first	(1) of		

Question Number	Acceptable Answers	Reject	Mark
2(iv)	$\begin{array}{l} C_2H_5 \bullet \ + \ C_2H_5 \bullet \ \rightarrow \ C_4H_{10} \\ \\ \mbox{ALLOW} \\ \mbox{Structural formulae e.g. } CH_3CH_2 \bullet \\ / \bullet \ CH_3CH_2 \\ \\ \mbox{OR displayed} \\ \\ \mbox{IGNORE} \\ CI \bullet \ + \ CI \bullet \ \rightarrow \ CI_2 \end{array}$	Methyl or propyl radicals	(1)

Question Number	Acceptable Answers	Reject	Mark
2b(i)	σ bond between C atoms shown as 2 overlapping orbitals/ one electron cloud/ single bond (1) π bond above and below $σ$ bond shown as two electron clouds/ overlapping p orbitals/ p orbitals linked by a line / a curved line above and below single bond (1) Both bonds must be labelled for 2 marks.		(2)

Question Number	Acceptable Answers	Reject	Mark
*2b (ii)			(3)

Question Number	Acceptable Answers		Reject	Mark
2(b)(iii)	From: Purple/ pink (solution) To: colourless	(1)	To brown	(2)
	н н н—о—с—с—о—н н н	(1)	Molecular/ structural/ skeletal formulae	
	Any orientation Don't penalise undisplayed OH Don't penalise bonds going to middle of undisplayed OH		C bonded to H of OH	

Question Number	Acceptable Answers	Reject	Mark
2(b)(iv)	Second mark depends on use of bromine/ solution of bromine for test.		(2)
	EITHER Test: add bromine water / Br ₂ (aq) ALLOW Add bromine in organic solvent/ bromine dissolved in hexane/ bromine in 1,1,1-trichloroethane (1)		
	From: brown/ red-brown/orange/ yellow To: colourless (1)		
	OR Add bromine / Br ₂ (1)		
	From: brown/ red-brown To: colourless (1)		

Question Number	Acceptable Answers	Reject	Mark
2(b)(v)	$H_{H} = e^{H_{H}} + e^{H_{H}$	Half arrows	(4)

Question Number	Acceptable Answers	Reject	Mark
2(c)	$///$ + H ₂ \rightarrow ///	Use of H, H ⁺	(2)
	(1)		
	Suitable catalyst nickel/ platinum/ palladium (1)	Zeolite catalyst	
	Ignore references to temperature, pressure, uv light		

Question	Acceptable Answers	Reject	Mark
Number			
3 (a)(i)	(Compound of) carbon and hydrogen	"Mixture of carbon and	1
	ONLY/ENTIRELY/PURELY	hydrogen only"	

Question Number	Acceptable Answers	Reject	Mark
3 (a)(ii)	(Contains) only (C—C) single bonds/ only σ bond(s) OR (Contains) no (C=C) double bond(s)/no triple bond(s) OR Cannot undergo addition (reactions) ALLOW Has maximum number of hydrogen atoms / has maximum amount of hydrogen /can form no more bonds		1
	IGNORE references to alkanes		

Question Number	Acceptable Answers	Reject	Mark
3 (b)(i)	Boiling point(s) / boiling temperatures / boiling ranges	Just 'different temperatures'	1
	ALLOW Different sizes of molecules / different chain lengths / different numbers of carbon atoms	Breaking of hydrocarbon chains	
	IGNORE References to melting points / melting temperatures / condensing		

Question	Acceptable Answers	Reject	Mark
Number			
3	Save fossil fuels / saves finite		1
(b)(ii)	resources / saves petrol / saves diesel		
	OR		
	More sustainable		
	OR		
	Uses renewable resources / biodiesel		
	made from 'natural resources'		
	OR		
	Biodiesel is a renewable fuel		
	OR		
	Plants (more) carbon neutral / use of		
	plants improves carbon footprint (of		
	fuel)		
	OR		
	Biodiesel has smaller carbon footprint		
	/ zero carbon footprint		
	OR		
	Biodiesel (more) carbon neutral		
	ALLOW		
	Reverse argument for petrol / 'normal'		
	diesel (eg crude oil is non-renewable)		
	IGNORE		
	Less impact on the environment /		
	references to 'environmentally		
	friendly' / less polluting / acid rain		
	IGNORE		
	References to 'global warming' or		
	'Greenhouse Effect' or 'climate		
	change'.		

Question Number	Acceptable Answers	Reject	Mark
3 (c)(i)	C ₉ H ₂₀		1
	IGNORE		
	Any structures drawn out		
Oursetter		Delinat	N 4 1 -
Question	Acceptable Answers	Reject	Mark
	First mark:		2
5 (c)(ll)	Any ONF of -		~
5 (c)(ii)	Any ONE of:- (Greater) demand for smaller molecules / (Greater) demand for smaller alkanes / (Greater) demand for alkenes / To make more useful products / To make more reactive product / To make smaller molecules / To make shorter molecules / To make shorter chains NOTE: ALLOW 'To produce fuel(s)' (1) Second mark: (High temperatures needed to) break (the C-C and / or C-H) bonds OR To break (down) the (hydrocarbon) chain(s) / To break (down) the molecule(s) / To split the molecule(s) / To break the hydrocarbon OR (Reaction is) endothermic ALLOW	No 2nd mark if any of the following are mentioned: Separation of molecules Breaking intermolecular forces References to (high) boiling temperatures / (high) boiling points	2
	To overcome the (high) activation energy / the reaction has a high activation energy / provide activation	References to (high) melting temperatures / (high)	
	energy	melting points	
	IGNORE C-C bond is stable References to increasing rate (of reaction) References to yield / equilibrium References to efficiency / producing less CO		
	(1)		
	Marks are stand-alone		

Question Number	Acceptable Answers	Reject	Mark
3 (d)(i)	(Substance that) produces energy or produces heat IGNORE: - References to 'power' References to just 'exothermic' References to burning or combustion or heating the fuel or reference to oxygen		1

Question Number	Acceptable Answers	Reject	Mark
3 (d)(ii)	$C_4H_{10}(g) + 6\frac{1}{2}O_2(g) \rightarrow 4CO_2(g) + 5H_2O(I)$	$H_2O(\mathbf{g})$ $C_4H_{10}(\mathbf{I})$	2
	OR		
	$C_4H_{10}(g) + 6.5O_2(g) \rightarrow 4CO_2(g) + 5H_2O(I)$		
	OR		
	$C_4H_{10}(g) + \frac{13}{2}O_2(g) \rightarrow 4CO_2(g) + 5H_2O(I)$		
	OR		
	$2C_4H_{10}(g) + 13 O_2(g) \rightarrow 8CO_2(g) + 10H_2O(I)$		
	OR Any other correct multiples		
	Correct species (1)		
	Balancing and state symbols correct		
	2 nd mark is dependent on the 1 st mark		

Question Number	Acceptable Answers	Reject	Mark
3(d)(iii)	$C_4H_{10} + 4\frac{1}{2}O_2 \rightarrow 4CO + 5H_2O$		1
	OR		
	$C_4H_{10} \ + \ 4.5 \ O_2 \ \rightarrow 4CO \ \ + \ 5H_2O$		
	OR		
	$C_4H_{10} + \frac{9}{2}O_2 \rightarrow 4CO + 5H_2O$		
	OR		
	$2C_4H_{10} + 9 O_2 \rightarrow 8CO + 10H_2O$		
	OR Any other correct multiples		
	IGNORE		
	State symbols even if incorrect		

Question Number	Acceptable Answers	Reject	Mark
3(d)(iv)	Limited (supply of) air / oxygen OR insufficient (supply of) air / oxygen OR Oxygen / air not in excess OR Not enough air / not enough oxygen ALLOW 'Lack of oxygen' / lack of ventilation IGNORE "It is not completely oxidized"	' no air' / ' no oxygen'	1

Question Number	Acceptable Answers	Reject	Mark
3(e)(i)	First markCalculation of the sum of the M_r valuesof all the products = 217.8 If using $Br = 80$, $M_r = 218$ (1)		2
	Second mark Calculation of % atom economy using value of total M_r		
	$\begin{bmatrix} = \frac{136.9}{217.8}$ (x 100%)]		
	= 62.856 (%) (1)	For M _r = 217.8 , 62.8 % (no 2nd mark, as this is a rounding error)	
	NOTE If using Br = 80, final answer = 62.844 (%)		
	ALLOW ECF for the 2nd mark on an incorrect total M _r value		
	IGNORE sf except 1 sf		
	Correct answer with no working (2) Check rounding of answer		
	NOTE If one error only is made, (1) mark awarded		

Question Number	Acceptable Answers	Reject	Mark
*3(e)(ii)	First mark:Initiation (step)(1)		7
	Second mark: $Br - Br \rightarrow Br \bullet + Br \bullet /$ $Br_2 \rightarrow 2Br \bullet$ (1)		
	Third mark: Propagation (steps)(1)		
	Fourth and fifth marks:		
	$Br\bullet + C_4H_{10} \rightarrow C_4H_9\bullet + HBr $ (1)	H• (the fourth and fifth	
	$Br_2 + C_4H_9 \bullet \rightarrow C_4H_9Br + Br \bullet $ (1)	 marks cannot be awarded if H● appears in either propagation step) 	
	Allow in either order		
	Sixth mark: Termination (step(s) (1)		
	Seventh mark:		
	Any one of		
	$Br \bullet + Br \bullet \rightarrow Br_2$		
	$C_4H_9 \bullet + Br \bullet \rightarrow C_4H_9Br$ OR		
	$C_4H_9\bullet + C_4H_9\bullet \rightarrow C_8H_{18} $ (1)		

(Total for Question = 21 marks)